
Celsion

Novel DNA Approaches for Cancer Immunotherapies and Multivalent Infectious Disease Vaccines

Celsion's Proprietary Plasmid DNA Technology Platforms

TheraPlas

- Polymeric Nanoparticle Delivers Plasmid DNA Coding for Therapeutic Proteins
- Safely Administered to Over 100 Patients To-Date

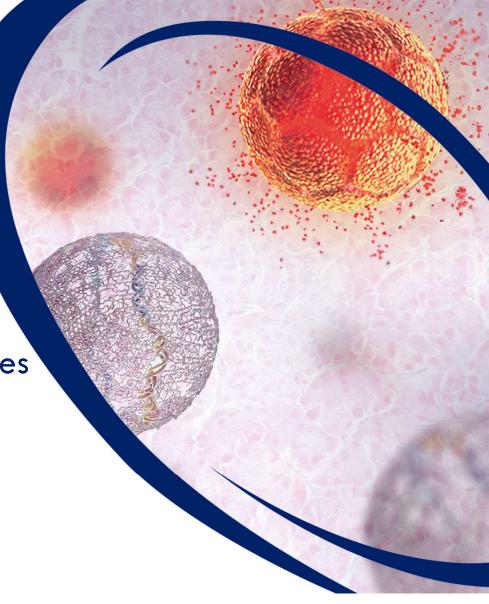
PLACCINE

- Plasmid DNA Vaccine Formulations (no virus or device)
- Designed for multiple antigens
- Option for the co-expression of immunomodulators

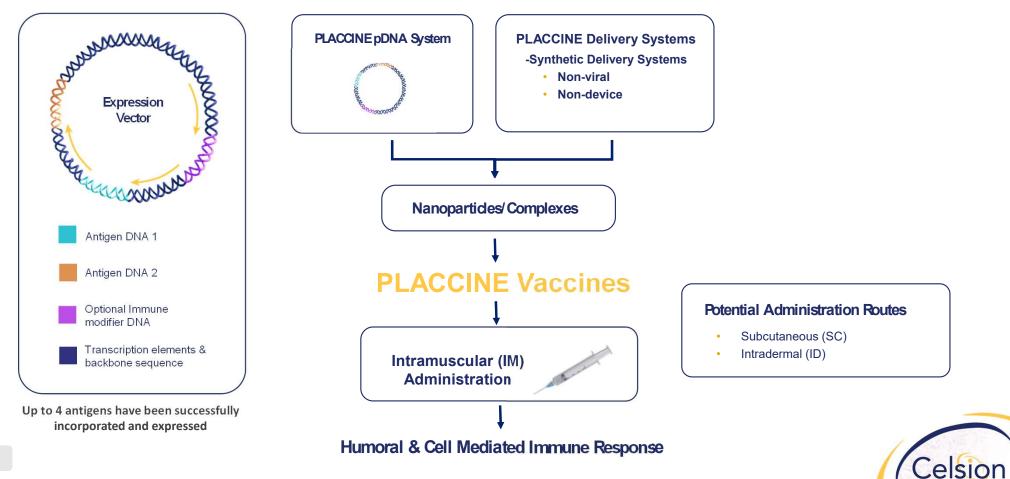
GEN-1 Immunotherapy

Localized Interleukin -12 Immunotherapy

Phase II Evaluation in Advanced Ovarian Cancer Orphan Drug Designation: U.S. and EU Fast Track Designation



Proof-of-Concept to Demonstrate PLACCINE as Best-in-Class Vaccine Platform Using SARS-CoV-2 as a Benchmark


Celsion

Multivalent Infectious Disease Vaccines

Multi-cistronic Formulated pDNA Vaccine Platform

Proprietary PLACCINE Platform Technologies

Hypothesis: PLACCINE Provides a Best-in-class Nucleic Acid Vaccine Platform

Demonstrating Proof of Concept by Developing a multivalent SARS-CoV-2 Vaccine

Multivalent pDNA

Broad-based protection and improved resistance to mutations.

Durable antigen exposure

• Compared to mRNA/protein vaccines yielding a more robust overall immune response.

Synthetic delivery system

• Independent of a virus or device.

Manufacturing

• Flexible design & generic process enabling a rapid response to pandemics/changing pathogen

Storage & distribution advantages

• DNA product stability compatible with standard vaccine storage and distribution models.

PLACCINE Development Strategy

- Vector Optimization- Single Antigen Vectors
 - Antigen structure
 - Transcription elements

Multiple Antigen Vectors

Optimized parameters from single antigen vectors

Formulation Development

- Synthetic delivery systems
- Gene expression and immune response
- Adjuvants

Immunogenicity in Mice and NHP

- IgG and T-cell responses
- Neutralizing antibodies
- Challenge studies

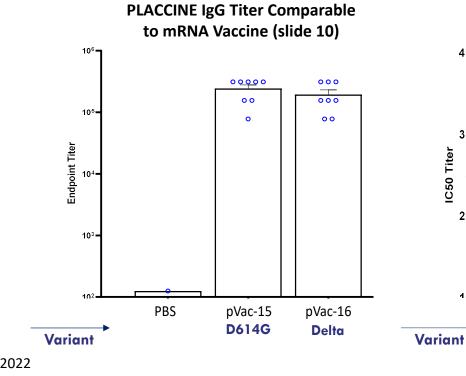
Evaluation with a Comparator Vaccines

Single Antigen Vaccines based on Optimized Vectors & Formulation

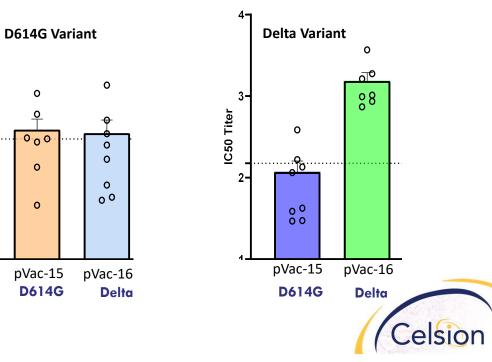
4-

3-

2-

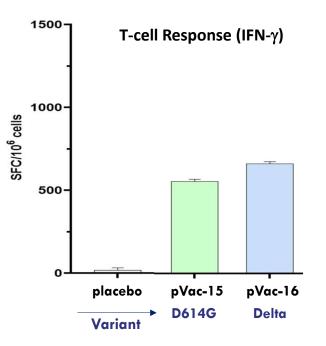

IC50 Titer

IgG and nAb Levels


- Single antigen vectors pVac-15 (D614G), pVac-16 (Delta)
- Formulation •

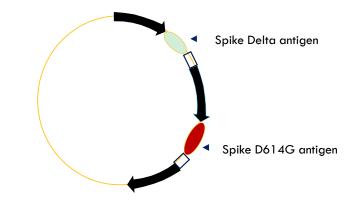
F3

- 125 μg DNA
- IgG titer and nAb (day 35)

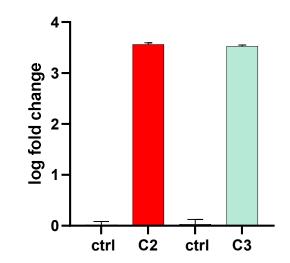


02-2022

Single Antigen Vaccines based on Optimized Vectors & Formulation


T-cell Response

- Vector **pVac-15** (D614G), **pVac-16** (Delta)
- Formulation: F3
- 125 μg DNA
- IgG titer (day 35)

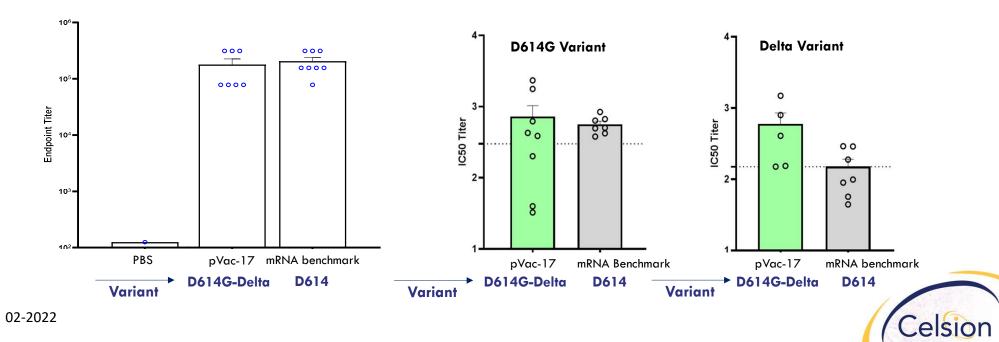


Multicistronic Vector Expressing Two SARS-CoV-2 Antigen Variants

Two-Variant Multi-cistronic Vector

Distinguishing between D614G and Delta by sequence-specific qPCR primers

A Multicistronic PLACCINE Vaccine Protects Against Multiple Variants


IgG and nAb Titers Comparable to a Commercial mRNA Vaccine

IgG Titer

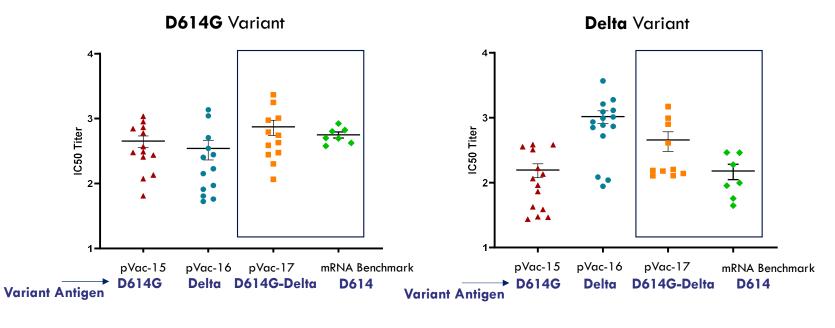
- Multicistronic vector **pVac-17**
- Spike antigen D614G, Delta
- Formulation: F3
- 125 μg DNA

10

• IgG titer (day 35)

Neutralizing Antibody Titer

Combined data from Two Separate PLACCINE Studies


Neutralizing Antibody Response

• Vectors **pVac-15** (D614G)

pVac-16 (Delta)

pVac-17 (D614G+Delta)

- Formulation: F3
- 125 μg DNA
- IgG titer (day 35)

A Broad Vaccine Pipeline Opportunity Following Proof of Concept

Initial POC/Validation Target

Potential Pathogen Targets

HSV	RS∨	Chikungunya	Mycobacterium tuberculosis
HIV	Dengue	Measles	Plasmodium falciparum
Нер С	Ebola	MERS-CoV Toxoplasma gondii	
	Zika	Yersinia pestis	

Future Pipeline Criteria

- Unmet need
- Conventional approaches ineffective
- Suitable for DNA approach

Potential Next Candidates

- CMV
- RSV
- Influenza

Ongoing Development

- Immune response durability studies
- Dose response, safety toxicity, and biodistribution
- Challenge studies rodent and NHP
- Stability studies at optimal commercial conditions

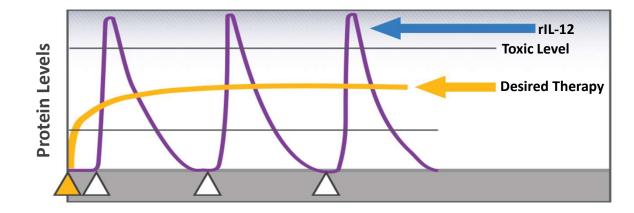
Celsion GEN-1 IL-12 IMMUNO-ONCOLOGY PROGRAM

IL-12: A Powerful Immune-Modulating Agent

Interleukin-12 Can Induce Anti-cancer Immunity Through Multiple Mechanisms

Activation/Proliferation	1	Stimulates the proliferation of CD-8 positive T-cells and natural killer (NK) cells and their cytotoxic activity against the tumor
Maturation/Proliferation	2	Shifts the differentiation of naive CD-4 positive T-cells toward a TH-1 phenotype, further enhancing the immune response – Turns "cold" tumors into "hot" tumors
Anti-Angiogenesis	3	Promotes cellular production of the potent immune mediator IFN- γ and TNF- α . IFN- γ promotes the expression of anti-angiogenic molecules, halting the growth of new blood vessels that supply oxygen to the tumor
Inhibition of Immune Suppression	4	IL-12 inhibits regulatory T-cells that suppress immune responses by "hiding" the tumor from the body's immune system
15		Celsion

Anti-cancer Activity of rIL-12 Observed in Multiple Cancers


Serious Systemic Toxicity Warrants Alternate Delivery Strategies

CANCER INDICATIONS

- Melanoma
- Renal carcinoma
- •Lymphoma
- •Gl cancer

SERIOUS SYSTEMIC TOXICITY

- •Hematological
- •Hepatic
- Neurological

- Therapeutic potential of rIL-12 is limited by poor pharmacokinetics when administered by multiple routes (IV, SC, IP).
- Clinically viable alternate strategies for IL-12 delivery are warranted

GEN-1: DNA-based IL-12 Delivery by Intraperitoneal Administration

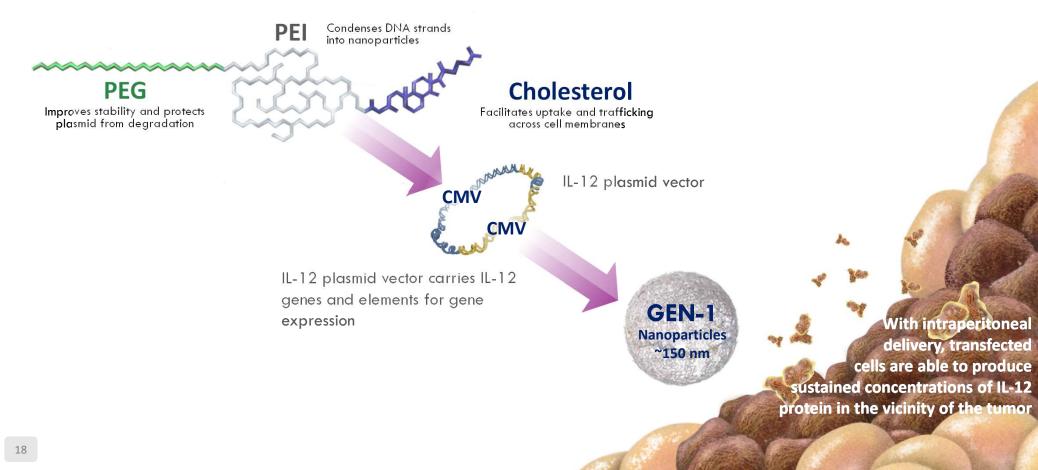

A safe alternative to rIL-12 therapy for peritoneal carcinomatosis of Gyn/GI Origin

GEN-1 Concept

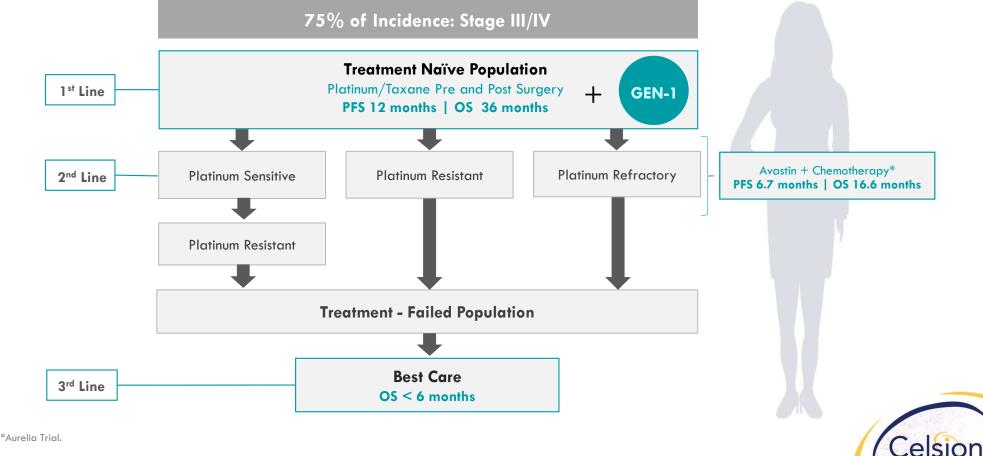
 Local increases in IL-12 at tumor site for several months w/o systemic toxicity will be safer and more effective than rIL-12

Cancer Impact

- Persistent long-term increases in IL-12 will shift TME from immuno-suppressive to immunostimulatory
- A pro-immune TME will inhibit tumor growth and predisposes it to rationale combination therapies



Local Expression of IL-12 Favors Immune Modulation in Tumor Microenvironment


GEN-1 Composition

PPC - 3 Components: Polyethylene Glycol (PEG), Polyethyleneimine (PEI), Cholesterol + IL-12 Plasmid

Treatment Options in Advanced Ovarian Cancer Are Limited

Recurrence Rates are High and Survival Rates Low

OVATION I: Phase I Trial of GEN-1 in Newly Diagnosed Ovarian Cancer Patients

- Neoadjuvant patient population
- Standard 3+3 design with ~30% dose increments + standard carboplatin (C) and paclitaxel (T)
- Eight weekly doses of GEN-1 before debulking surgery

Common AEs Attributed to GEN-1	Total (n, %)	Grade 1 & Grade 2 (n,%)	Grade 3 (n,%)	Grade 4 (n, %)	Grade 5 (n, %)
Nausea	9, 60%	9, 60%	0, 0%	0, 0%	0, 0%
Abdominal Pain/ Cramping	6, 40%	5, 33%	1, 6%	0, 0%	0, 0%
Fatigue	6, 40%	6, 40%	0, 0%	0, 0%	0, 0%
Vomiting	6, 40%	5, 33%	1, 6%	0, 0%	0, 0%
Diarrhea	5, 33%	3, 20%	2, 13%	0, 0%	0, 0%
Neutropenia	5, 33%	3, 20%	1,6%	1,6%	0, 0%

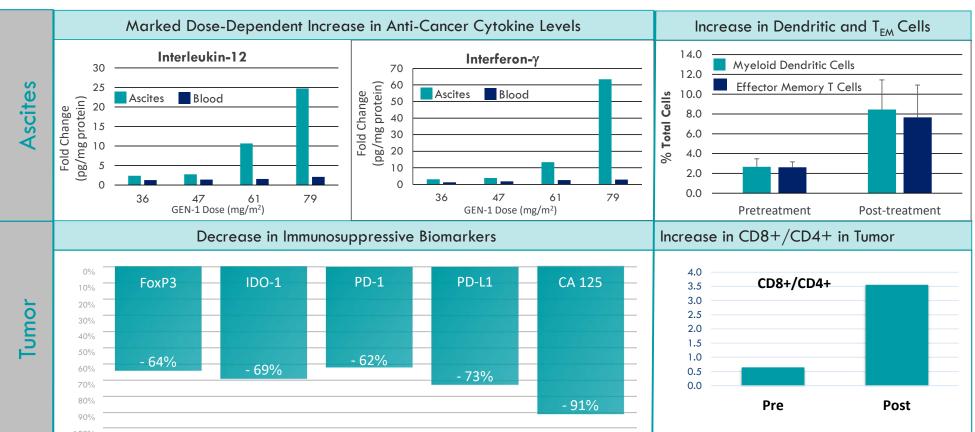
Safety

- Dosing: GEN-1 dosing ranged 36 mg/m² 79 mg/m² weekly during chemotherapy up to 8 doses
- Safety Monitoring Board recommended starting dose of next trial: 100 mg/m²
- One patient discontinued due to toxicity (altered taste)

20

OVATION I Study: Dose-Dependent Clinical Responses Observed

- Standard 3+3 design with ~30% dose increments + standard carboplatin (C) and paclitaxel (T)
- Eight weekly doses of GEN-1 before debulking surgery

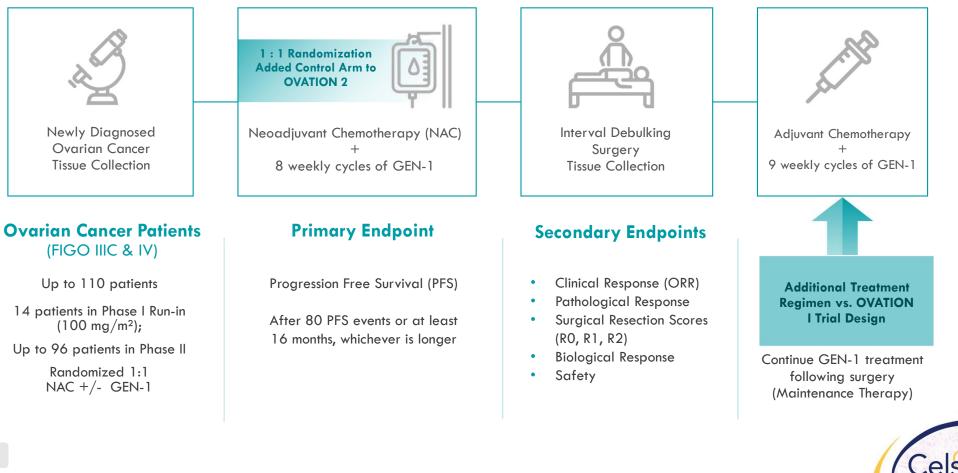

	GEN-1			
	Low-Dose Cohorts 36 mg/mg ² & 47 mg/mg ²	High-Dose Cohorts 61 mg/mg ² & 79 mg/mg ²		
Objective Tumor Response (CR/PR) RECIST 1.1	66%	100%		
Interval Debulking Status RO Resection Rate	33%	88%		
Chemotherapy Response Score CRS 3 Rate	17%	50%		

Clinical Responses*

* Chemotherapy dose consistent across all GEN-1 dosing cohorts

21

OVATION I Study Translational Data Sampling


- Increases in cytokine levels shows GEN-1's activity; Low cytokine blood levels underpin the safety profile of GEN-1
- Increase in anti-cancer dendritic cells & effector memory T-cells demonstrate activation of the cellular immune system
- Overall shift in tumor microenvironment to immunostimulatory

22

GEN-1 OVATION 2 Ovarian Cancer Study

To Determine Efficacy and Biological Activity With NAC in Stage III/IV Patients

GEN-1 OVATION 2 Ovarian Cancer Study

Phase I/II Open Label Controlled Trial

- Phase | Portion (N=14) Completed
- 100 mg/m² GEN-1 Dose Confirmed
- 22 Clinical Sites in U.S. and Canada
- Enrollment Expected to be Completed in Q3 2022

Interim Data (After 35 IDS)	NACT ONLY	NACT + GEN-1
Interval Debulking Surgery (IDS) RO Resection Rate	56%	80%

Summary

DNA Vaccines

- PLACCINE vaccine technology, independent of virus/device, potentially durable immunity and shelf-life
- Flexible design & generic manufacturing process better equipped for a rapid response to pandemic
- A multi-cistronic vaccine provides protection against multiple variants of pathogens addressing resistance issues

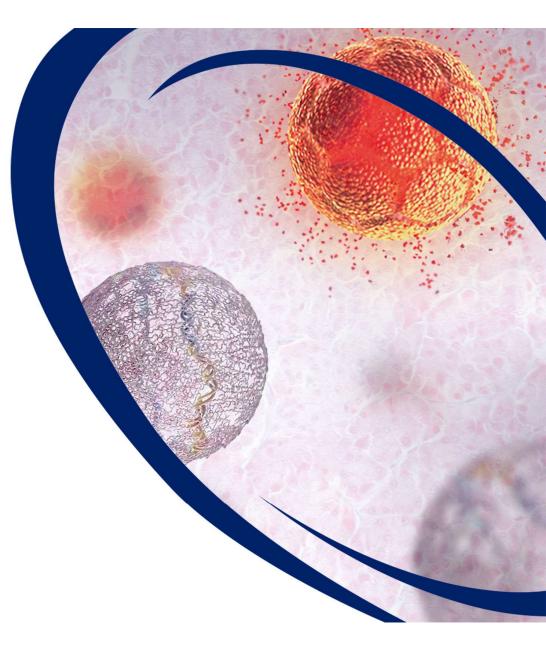
GEN-1

- An unprecedented pharmacology (local/durable/maintenance) of a powerful IL-12 immunocytokine
- GEN-1 IP treatment is associated with biologic and clinical activity with excellent safety
- OVATION 2 offers new hope to newly diagnosed advanced ovarian cancer patients
- Full enrollment in OVATION 2 is expected to be completed by 3rd Quarter of 2022

Pipeline Milestone Events

2022 - 2023

Open-label design allows for periodic reporting of results



Corporate Information Celsion Corporation 997 Lenox Drive Suite 100 Lawrenceville, NJ 08648

P 609-896-9100 F 609-896-2200

www.celsion.com

Nasdaq: CLSN

